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Abstract 
The far field acoustic spectra at 90° to the downstream axis of some typical high speed jets are 

calculated from two different forms of Lilley’s equation combined with some recent measurements of the 
relevant turbulent source function. These measurements, which were limited to a single point in a low 
Mach number flow, were extended to other conditions with the aid of a highly developed RANS 
calculation. The results are compared with experimental data over a range of Mach numbers. Both forms 
of the analogy lead to predictions that are in fair agreement with the experimental data at subsonic Mach 
numbers. The agreement is not quite as good at supersonic speeds, but the data appears to be slightly 
contaminated by shock- associated noise in this case.  

 I. Introduction 
 The results of Part 1 can not be used to predict the radiated sound without inputting more specific 

information about the turbulence structure. In this part we accomplish this objective by using some recent 
measurements (ref. 1) of the two point fourth order stream-wise velocity correlation spectra that were 
carried out by Harper-Bourne (ref. 1) at a single point on the centerline of the mixing layer in a low Mach 
number jet. 

II. The Harper-Bourne Spectrum 
Harper-Bourne’s results would most closely correspond to 
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with the quasi-normal approximation that is being used in the present analysis.  

He divided this quantity into the three components (see his eq. (2.5) and (2.7) on p. 2) 
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where l1, l⊥are the spectral stream-wise and transverse length scales (not to be confused with the time 
domain length scales L1 and L⊥introduced above) and 
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No assumption is made about the decomposition of the correlations into products of their space and time 
components with this approach.  

The first factor can be evaluated from his measurements of R1111 (y, 0, τ), which can be reasonably 
well represented by the simple exponential e−λ τ . Taking its Fourier Transform shows that (ref. 20) 
 

 ( )
k4

1
2 2

, ,
( )o

u
H

λρ
ω =

π λ + ω
y 0   (4) 

 
Harper-Bourne was able to obtain a reasonable fit to his data with the non-separable form 
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Inserting these into equation (2) and using the result in equations (43) and (44) of Part 1 shows that 
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Where the scaled length scales 1l  and l⊥  are defined by 



NASA/TM—2005-213829/PART2 3

 1
1 2 c

ll
U

ω
≡

π
  (8a) 

 
and 

 

  
2 c

ll
U
⊥

⊥
ω

≡
π

  (8b) 

 
Harper-Bourne’s figure 13 shows that while l1 and l⊥ are constant at relatively low frequencies it is the 
scaled length scales il  and l⊥  that becoming constant as ω→∞. The data is reasonably well represented 
by the functions  
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where  
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As indicated in Part 1, this result was derived only for the first formulation, but it turns out that it will 

apply to the second as well if κ is set to zero and a slightly different formula is used for 2
0C . The principle 

difference between these results is therefore due to the factor ( )22 U⎡ ⎤ω + κ ∇⎢ ⎥⎣ ⎦
, which does not 

significantly effect the high frequency behavior of the solution but causes Iω to exhibit the dipole-like 
behavior 
 

  2 as 0Iω ω ω→∼   (11) 
 
in the first formulation and the quadrupole-like behavior  
 

 4 as 0Iω ω ω→∼   (12) 
 
in the second.  

III. Extension of the Harper-Bourne Data 
Unfortunately, all of Harper-Bourne’s measurements were taken at a single point in a very low Mach 

number jet, while acoustic predictions require information about the turbulence over the entire noise 
producing region of the jet. We, therefore attempt to extend his data by using some modeling assumptions 
along with the Glenn Wind code, which is a RANS code with a standard k – ε turbulence model. To this 
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end, we first assume that the time scale λ–1 that appears in equation (53) of Part 1 is proportional to the  
k – ε time scale k

ε , i.e., we put 

 
  1 kC− τλ ≈ ε  (13) 

 
where Cτ is an adjustable constant. In order to extend equations (9a) and (9b), we assume that the time 

and velocity scales 
J

D
U and UJ are proportional to the k – ε time and length scales k

ε  and
1

2k  

respectively to obtain 
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where the constants Cl and CS are determined by requiring that equations (9a) and (9b) be in agreement 
with Harper-Bourne’s measurements at the Harper-Bourne measuring point and Mach number when k 
and ε are calculated from the Wind code. A reasonably good approximation is obtained by putting Cl ≈ 
3.3 and CS ≈ 0.40. To be consistent with these extensions it is necessary to put 
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in equation (6). 

In the first formulation the constant Co is related to the ratio Γr (defined in equation (42) of Part 1 by 
equation (45) of Part 1), which for γ = 1.4 becomes 

 

  ( )22 0.43 0.01
3oC r≈ Γ +  (16a) 

 
and in the second by 
 

 ( )22 1
4oC r= Γ  (16b) 

 
Unfortunately, Harper-Bourne only measured the steam-wise and not the transverse velocity 

correlations so that Γ is essentially unknown. We therefore treat Cτ and Co as adjustable constants, whose 
determination is described in the next section. It is necessary to know the square root in equation (46) of 
Part 1 in order to determine κ, but again, Harper- Bourne does not provide enough data to determine this 
quantity. We estimate its value to be less than one, however. 
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IV. Comparison with acoustic Measurements and Discussion 
RANS solutions for Mach 0.50, 0.90, and 1.5 cold jets were obtained from the WIND code with 

upstream nozzle conditions specified in terms of plenum temperature ratio Tr and the pressure ratio .The 
predicted turbulent kinetic energy distributions for the three jets are shown in figure 1. 

The far-field spectra at 90o to the jet axis were calculated for these jets on the arc R/D = 100 by 
summing the point result (7) over the noise producing region of the jet. Figures 2 through 4 show the 
comparison between these results and the subsonic SHJAR data recently acquired at NASA Glenn 
Research Center and correctly expanded supersonic data obtained at Langley Research Center. 
Atmospheric attenuation was removed from all measurements in order to make lossless comparisons with 
the predictions. The agreement is better in the subsonic case, but it is likely that the supersonic data 
contains a small amount of shock associated noise that is not accounted for by the theory. 

The adjustable constants Cτ and Co were determined by obtaining the best fit with the Mach 0.5 data. 
The resulting value of Cτ turns out to be 0.10. Figure 3 shows that there is almost no dependence on the 
parameter κ when its value is in the estimated range 0 < κ < 1, which means that these data comparisons 
were not discriminating enough to distinguish between these two formulations. The hope is that similar 
comparisons for hot jets or jets with more complex flow fields will provide the required selectivity. 

V. Concluding Remarks 
The research was initially motivated by the desire to distinguish between the two forms of the 

acoustic analogy described above. Unfortunately the results turned out to be inconclusive-with both forms 
of the analogy yielding reasonable agreement with the data. Our hope is that similar comparisons for hot 
jets or jets with more complex flow fields will provide the required selectivity. But until this is done, our 
recommendation would be to base the jet noise predictions on the second formulation, since it leads to 
much simpler formulas at angles other than 90°.  
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Figure 1(a).—As figure 1 but Predicted turbulent kinetic energy (top),  
and frequency scale (bottom) for a 2 in. diameter  

cold jet at Mach 0.50 r ⊥≡ y . 
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Figure 1(b).—As figure 1 but predicted turbulent kinetic energy (top),  

and frequency scale (bottom) for a 2 in. diameter  
cold jet at Mach 0.90 r ⊥≡ y . 
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Figure 1(c).—As figure 1 but predicted turbulent kinetic energy (top), and 

frequency scale (bottom) for a Mach 1.50 convergent-divergent  
nozzle with 1.68 in. exit diameter r ⊥≡ y . 
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Figure 2.—Spectrum at 90o and at R/D = 100 for a Mach 0.50 cold jet.  

Prediction (dashed line); data (solid line). 
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Figure 3.—As figure 1 but for a Mach 0.90 cold jet. Prediction  

with κ = 0.0 (dashed line); κ = 0.90 (dash-dot); data (solid line). 
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Figure 4.—As figure 2 but for Mach 1.5 cold jet. 
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